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SUMMARY
Many alien species are neither cultivated nor traded but spread unintentionally, and their global movements,
capacities to invade ecosystems, and susceptibility to detection by biosecurity measures are poorly
known.1–4 We addressed these key knowledge gaps for ants, a ubiquitous group of stowaway and contam-
inant organisms that include some of the world’s most damaging invasive species.5–10 We assembled a data-
set of over 146,000 occurrence records to comprehensively map the human-mediated spread of 520 alien ant
species across 525 regions globally. From descriptions of the environments in which species were collected
within individual regions—such as in imported cargoes, buildings, and outdoor settings—we determined
whether different barriers to invasion had been overcome11 and classified alien ant species under three levels
of invasion capacity corresponding to increasing biosecurity threat. We found that alien species of different
invasion capacities had different sources and sinks globally. For instance, although the diversity of indoor-
confined species peaked in the Palearctic realm, that of species able to establish outdoors peaked in the
Nearctic and Oceanian realms, and these mainly originated from the Neotropical and Oriental realms. We
also found that border interceptions worldwide missed two-thirds of alien species with naturalization capac-
ity, many associated with litter and soil. Our study documents the vast spread of alien ants globally while
highlighting avenues for more targeted biosecurity responses, such as prioritizing the screening of imports
from regions that are diversity hotspots for species of high invasion capacity and improving the detection of
cryptic alien invertebrates dwelling in substrates.
RESULTS AND DISCUSSION

Global alien ant diversity
We compiled 146,917 records corresponding to 17,948 occur-

rences of alien ant species across 525 non-overlapping regions

corresponding to all areas where ants occur on Earth. These re-

gions were delineated to reflect the finest geographic resolution

at which data on ant species’ occurrenceswas available; a single

region typically corresponded to a country or a smaller adminis-

trative area such as a state or an island. From the data,12 we

identified a total of 520 alien ant species, which had been re-

corded as native in 497 regions and non-native in 486 regions

globally, evidence of their massive worldwide spread. This

doubled the most recent estimate of alien ant diversity and

improved the geographic resolution for mapping their global dis-

tributions (cf. 252 species distributed across 195 country-level

units in Bertelsmeier10).

Alien ant invasion capacities
To determine alien ant species’ invasion capacities, we orga-

nized the data according to a well-established conceptual
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framework of ecological barriers to invasion.11 Specifically, we

inspected all records of each ant species’ non-native occur-

rences for information about the localities and conditions in

which they were collected (e.g., in imported cargo and intercep-

tions from quarantined items, in buildings and other indoor envi-

ronments, or in native ecosystems) and thereby classified alien

ant species under three levels of invasion capacity that corre-

sponded to increasing biosecurity threat, as follows. ‘‘Level I:

Transport Only" species had non-native records that only re-

ported individuals in border interceptions at ports of entry. While

these species could overcome barriers to their uptake and trans-

port, thereby entering new destinations, they could not over-

come demographic and environmental barriers to their estab-

lishment of populations at those destinations, and therefore

were of lower biosecurity concern. ‘‘Level II: Establish Indoors

Only" species could overcome the same barriers as Level I spe-

cies, as well as demographic barriers to establish non-native

populations, but only in locations buffered from external environ-

ments (e.g., buildings and greenhouses), where they could

impact human activity as pests. ‘‘Level III: Naturalize’’ species

were of most concern to biosecurity. These species could
ors. Published by Elsevier Inc.
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Figure 1. Origins and destinations of alien ant species across 525 regions

(A) Origins of alien ant species.

(B–D) Destinations of alien ant species of different invasion capacities (at region scale).

See also Figure S1 for a summary of widespread alien ant species.
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overcome all geographical, demographic, and environmental

barriers to their establishment of non-native populations in out-

door settings, thereby increasing their chances for subsequent

uptake and transport to expand their non-native ranges.

Patterns in alien ant diversity at different geographical
scales
We applied the classification to examine whether differences in

species’ invasion capacities influenced (1) the distribution of

alien species richness across 525 regions, (2) the exchanges of

species between eleven major zoogeographic realms, and (3)

the overall composition of alien species globally. Specifically,

we asked whether our view of these fundamental patterns

changed when species of a different invasion capacity were

considered.

First, we classified species’ invasion capacities relative to indi-

vidual geographic regions (n = 525) and mapped the non-native

distributions of species of different invasion capacities across all

regions globally (Figures 1A–1D). We found that the distributional

patterns changed markedly when different invasion capacities

were considered (Figures 1B–1D). Among 525 potential destina-

tion regions globally, the hotspots where most alien species

naturalized correlated poorly with those where most were

confined to indoor populations (r = �0.06) and those where

most had arrived but had failed to establish (r = 0.13)

(Figures 1B–1D).

Second, we classified species’ invasion capacities relative to

elevenmajor zoogeographic realms (after Holt et al.13) and deter-

mined flows in the numbers of species of different invasion
capacities exchanged between the realms (Figures 2A–2E).

Although the Palearctic realm recorded the highest diversity of

alien ant species worldwide (170 species), just 42% of those

had overcome environmental barriers and naturalized (72 spe-

cies) (Figure 2A). In contrast, most species had naturalized in

the Nearctic (111 species) and Oceanian (102 species) realms

(Figure 2A). Flow patterns in the exchange of species between

realms also differed with the invasion capacity considered

(Figures 2B–2D). For instance, the Panamanian, Neotropical,

and Nearctic realms were major donors of Level I and Level II

but not Level III species to the Palearctic realm. Additionally,

the importance of the Oriental realm as a source of alien species

increased with increasing invasion capacity; resampling tests

showed that it was a significant exporter of species with natural-

ization capacity to as many as six realms globally, exporting 19–

52 species to these realms (Figure 2E; results for all realms in

Figure S2).

Third, we distinguished the 520 alien ant species by their

maximum invasion capacities at the global scale and tested

whether species of different invasion capacities were taxonom-

ically and ecologically different (Figure 3; Data S1). We identified

161 Level I: Transport Only species and 50 Level II: Establish In-

doors Only species. Most known alien species had a high inva-

sion capacity of Level III: Naturalize (n = 309). These included

17 species which had direct impacts on biodiversity and ecosys-

tems, as evidenced in the literature (Table S1). Nonetheless, this

did not imply that the other Level III species were of low concern.

Although it is true that some naturalized speciesmay not strongly

impact native biota, others may have less detectable but
Current Biology 33, 566–571, February 6, 2023 567



Figure 2. Breakdown and exchanges of alien ant species among eleven zoogeographic realms

(A) Numbers of species exported and imported by individual realms.

(B–D) Flows in the numbers of species of different invasion capacities (at realm scale) exchanged among realms (flows with <5 species are not shown).

(E) Flows in the numbers of Level III species to and from the Oriental realm, with statistically significant flows highlighted in red.

See also Figure S2 for flows of Level III species to and from each realm.
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nonetheless severe impacts on species as well as phylogenetic

and functional diversity, which represent an urgent knowledge

gap.14

Alien ants comprised a non-random subset of total ant diver-

sity, with disproportionate contributions of species from individ-

ual subfamilies. For instance, although the proportions of alien

species from the three largest subfamilies (Myrmicinae, Formici-

nae, and Ponerinae) did not differ substantially from their contri-

butions to total ant diversity, species of Dorylinae and Dolicho-

derinae were under- and over-represented among alien ants,

respectively (Table S2). Indeed, many Dorylinae species display

an army ant syndrome characterized by behaviors and ecologies

(e.g., nomadism and obligate collective foraging) that would

make themparticularly prone to detection during the initial intake

and transportation phases of the invasion process; the more

widespread alien species from this subfamily tend to be the

more cryptic, soil-dwelling species (e.g., Ooceraea biroi).15

Further underscoring the need to account for species’ invasion

capacities in invasion research, alien ants of different invasion

capacities differed significantly in taxonomic composition

(Table S2; Data S1), as well as ecological composition—in terms

of their use of different vertical habitat strata in terrestrial sys-

tems (Figure 3) (chi-square tests, p < 0.05; Data S1). The propor-

tion of formicines roughly halved from Levels I (42%) and II (40%)

to Level III (21%). Showing an opposite trend, ponerines consti-

tuted 3% of Level I species but as much as 13% of Level III spe-

cies; likewise, myrmicines were under-represented in Levels I

(42%) and II (28%) relative to Level III (50%) (Table S2).
568 Current Biology 33, 566–571, February 6, 2023
Most intriguingly, the proportion of arboreal species halved,

whereas that of species associated with litter and soil tripled

along the gradient of increasing invasion capacity from Level I

to Level III (Figure 3). One possible explanation for this pattern

is that stronger environmental barriers may hinder the establish-

ment of arboreal ant species. For instance, arboreal alien ants

may face direct biotic resistance from interspecific competition,

which is often especially intense in vegetation, owing to the

patchy distribution of limiting resources such as nest space

and food.16 Arboreal alien ants may also depend on mutualistic

or facilitative interactions with plants or herbivorous insects

that fail to establish in new regions owing to climatic factors.17

It is also conceivable that litter- and soil-associated ant species

have exploited a greater volume or diversity of invasion path-

ways than arboreal species to date. Notably, soil was often

used as ballast in ships throughout the expansion of European

maritime trade routes in the 16th century and into the 20th cen-

tury.18 Imported soils continue to be used in horticulture, agricul-

ture, and construction, and soil is a contaminant of imported

plant products as well as containers and vehicles.4,19,20 Still, in-

formation on the specific invasion pathways used by alien ant

species have largely been anecdotal, with many established

populations only being detected years, if not decades—and

even centuries in the case of Solenopsis geminata in Asia18—af-

ter introduction events. This dearth of information on when and

how species were unintentionally introduced further under-

scores the value of examining their habitat preferences and traits

to clarify invasion pathways. Finally, the patterns observed may



Figure 3. Differences in ant species’ invasion capacities and use of vertical habitat strata at global scale

Top row (invasion capacity) summarizes the diversity of species (and subspecies) for the global pool of ants (all ants [native]) and for 520 alien ant species in three

levels of invasion capacity and biosecurity threat that increase from left to right. Invasion capacities reflect species’ capacities to overcome successive barriers to

invasion (vertical dotted lines) at the global scale. For species in each group, the second row (habitat strata) shows their distribution across three major vertical

habitat strata of terrestrial ecosystems. See also Table S1 for a list of 17 Level III species with evidently harmful impacts; see Figure S3, Table S2, and Data S1 for

comparisons of the taxonomic and ecological compositions of alien ant groups. Images by Alex Wild.
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also have been an artefact of detection biases associated with

species from specific vertical strata, as discussed below.

Possible detection biases
The apparent compositional differences among ant species of

different invasion capacities at the global scale were likely

shaped to some extent by differences in the likelihood of detect-

ing species in different invasion stages or environments. For

instance, it is conceivable that individual queen ants or young,

small colonies dwelling in imported products would be less

easily detected at border interceptions compared with mature,

large colonies from naturalized populations in the wild. Simi-

larly—and evidencing a key blind spot in invasion manage-

ment—we found that roughly two-thirds of Level III: naturalize

species (n = 199) were not among species recorded in border in-

terceptions worldwide (n = 291). Moreover, litter- and soil-dwell-

ing ants constituted a significant proportion (29%) of the missing

species; this was almost triple the proportion of such ants (11%)

detected in border interceptions worldwide (chi-square tests,

p < 0.001; Figure S3; Data S1). Such patterns were likely shaped

by obstacles to detecting alien invertebrates in substrate, in

contrast to the widely implemented border screening protocols

targeting agricultural and domestic pests associated with vege-

tative matter (e.g., leaf-chewing and wood-boring insects).21,22

To this end, our results indicate that current gatekeeping bio-

security measures may be ill-equipped to deal with alien inverte-

brates, in particular those that impact the biodiversity and

ecosystem functioning of brown food webs.23
As with all global biodiversity assessments, the documented

patterns were inevitably shaped by variation in sampling effort

and data availability.2,24,25 For instance, the large number of Level

I alienant species recorded in theAustralianandPalearctic realms

(Figure 2) was likely influenced by the extensive data on border in-

terceptions in countries suchasAustralia and theUnitedKingdom

and the shortage of comparable data for countries in Asia and Af-

rica.2,26 The large number of studies on biological invasions in the

United States may have also contributed to the many Level III

species detected in the Nearctic.2 Our classification of alien ant

species’ invasion capacities system is conservative in requiring

positive evidence for species classified at each higher level. How-

ever, it is difficult to prove a negative, thus it is quite possible that

some species may have been classified at a level lower than they

should be due to a lack of knowledge. Although introduced ants

are a major concern and have been studied quite extensively,

and we made every effort to consolidate existing information,

weare far fromacompletepicture.Our analysis is intended topro-

vide a stateof knowledgeand framework forputting further obser-

vations in context, but the status of each species will need to be

continuously revisited in the future. A major challenge for future

studieswill be to determinewhether differences in records of alien

species between geographic regions relate to differences in the

flows of species, sampling effort, or data reporting.

Conclusions
Our findings provide the most comprehensive picture thus far of

the global non-native distributions of a terrestrial invertebrate
Current Biology 33, 566–571, February 6, 2023 569
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group. Terrestrial invertebrates constitute a large portion of the

biota exchanged worldwide but many species are poorly

known.27 Moreover, taxonomic impediments are a major

obstacle to identifying species, determining their native and

exotic ranges and developing effective control measures.28–31

To this end, knowledge of specific donor regions of species

with high invasion capacity (Figure S2) may help with the alloca-

tion of limited resources for measures such as the screening of

imports in a country. At the same time, novel methods to detect

alien invertebrates in litter and soil (e.g., eDNA) can be explored

in conjunction with the development of robust taxonomic and

molecular DNA libraries.32,33 The distribution data and classifica-

tions we provide should also allow future studies to explore the

mechanisms underlying ant species’ varying invasion capacities

among different regions (Figure S1); why species cannot estab-

lish or are confined indoors in some regions and yet able to natu-

ralize in others. Although our study comprehensively documents

current knowledge of the global spread and invasion capacities

of alien ant species, management protocols for specific regions

will have to be developed in collaboration with key stakeholders

such as border authorities and local landowners. Overall, our

research demonstrates how basic information describing the en-

vironments in which species were found, how they were

collected, as well as their functional traits and ecological prefer-

ences can be leveraged to distinguish alien species’ invasion ca-

pacities, advancing efforts to identify the biological correlates of

invasiveness to predict and manage future invaders.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Data on alien ant species’ occurrences in

geographic regions and zoogeographic

realms globally, and species’ occupancy

of different vertical habitat strata

This paper; Figshare12 https://doi.org/10.6084/m9.figshare.21666191

Software and algorithms

R version 4.1 R Development Core Team N/A
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Mark Wong (mark.

wong@uwa.edu.au).

Materials availability
This study did not generate any new reagents.

Data and code availability

d Data on alien ant species’ occurrences in geographic regions and zoogeographic realms globally, and species’ vertical habitat

strata have been deposited at Figshare and is publicly available as of the date of publication. DOIs are listed in the key re-

sources table.

d All original code has been deposited at Figshare and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study did not use experimental models.

Data on ant species occurrences
Data on ant species occurrences across regions globally was sourced from the Global Ant Biodiversity Informatics (GABI)

database.34

Data on vertical habitat strata
Data on ant species’ affinities for vertical habitat strata was sourced from Lucky et al.35 and a literature search.

METHOD DETAILS

Data compilation and organization
Data were compiled as part of the Global Ant Biodiversity Informatics (GABI) project. The details of data compilation have been

described fully previously25,34 and a brief update is presented here. In total, nearly two million records for nominal species were

compiled from 10,342 scientific publications, as well as 82 and 16 public and private databases, respectively [major components

included data from AntWeb,36 the Global Biodiversity Information Facility (GBIF), the Integrated Digitized Biocollections (iDigBio),

the Commonwealth Scientific and Industrial Research Organisation (CSIRO) collection and others; see Kass et al.25]. Dubious and

erroneous records were identified based on their mentions in the literature, cross-referencing when updates to checklists of species

were available, and through direct communication with numerous experts since 2012.

Native and non-native ranges were identified for each species based on their mentions in the literature and the number of records

present for the species (or in a few cases genera) within a particular zoogeographic realm or part of it. Information about the locality

and habitat of collection were also used to determine the native or non-native status of a species within a particular region. For
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instance, species encountered only within highly disturbed habitats within a particular region, one of the characteristics of tramp spe-

cies,37 and with an uncertain native range were considered non-native within the region. For several species that displayed extensive

and continuous distributions, some uncertainty was inevitable when demarcating the precise limits of their native and non-native

ranges at the scale of individual regions; nonetheless these uncertainties would have limited influence on patterns of species

distributions at the larger scale of zoogeographic realms. The resultant dataset, which included all ant species that had at least

one non-native record globally, consisted of 146,917 records (including native and non-native records); 4,127 of these were subse-

quently identified as dubious records.We further summarized the data by geographic regions to yield 17,948 occurrences of alien ant

species across 525 non-overlapping regions (i.e., all areas where ants occur on Earth).34

Details about the collection locality, sampling method, or any other relevant information associated with each non-native record of

a species were used to identify the geographical, demographic, and environmental barriers to invasion that the species had over-

come (or failed to overcome) and therefore its invasion extent within that particular region, based on positive evidence. In particular,

we distinguished among non-native records that reported three different types of information: (i) occurrences of species in border

interceptions (i.e., species overcoming geographical barriers to transport); (ii) occurrences of species established in indoor settings

such as buildings and greenhouses (i.e., species overcoming demographic barriers and some environmental barriers to establish-

ment); and (iii) occurrences of species established in outdoor settings including semi-natural and natural habitats (i.e., species over-

coming most barriers to establishment). We then compared the invasion extents of all non-native records for individual species to

determine their invasion capacities (Level I: Transport Only, Level II: Establish Indoors Only, or Level III: Naturalize) at the scale of

individual regions and zoogeographic realms, as well as at the global scale. In the common case where a species had multiple

non-native recordswith differing invasion extents at a given scale, we used a hierarchical approach and inferred the species’ invasion

capacity from its maximum invasion extent at that scale.

To provide additional information for supporting biosecurity efforts, we also scrutinized the pool of species with an invasion capac-

ity of ‘‘Level III: Naturalize’’ and from these distinguished 17 ‘‘harmful’’ species for which there was evidence of their impacts on native

biota in any of their invaded regions globally (Table S1). It should be noted that while some studies of biological invasions have

considered species to be ‘‘invasive’’ or ‘‘harmful’’ solely based on their geographic spread,38 such parameters are far more difficult

to establish for ants becausemost parts of the world have received very limited sampling efforts39; even in frequently sampled areas,

important habitat strata are often overlooked.40 Furthermore, species of some genera are extremely hard to identify in the absence of

taxonomic expertise (e.g., Cardiocondyla, Nylanderia, Pheidole). Not all naturalized species subsequently impact native biota, but

those that do often cause the most severe ecological and economic damage.3 Thus, we emphasized alien ant species’ impacts

on native biota (as compared to their geographic spread) when flagging species that would be of the greatest priority for biosecurity.

In this regard, our list of 17 harmful alien ant species differs slightly from the species listed in IUCN’s Global Invasive Species Data-

base (GISD),41 which includes 19 species but for which, to the best of our knowledge, seven are lacking in evidence of impacts on

native biota but may act as pests that are restricted to indoor environments or highly modified systems (Table S1). In addition, the

GISD lacks some species, such as Nylanderia fulva, for which impacts on native biota have already been demonstrated.42

We identified the vertical habitat strata used by each alien ant species based on a literature search as well as the genus-level clas-

sification of vertical habitat strata-use as reported in Lucky et al.35 with necessary updates to adhere to recent taxonomic changes.

Three habitat strata were considered: the arboreal, ground-surface, and the litter-and-soil strata.35 Ant species’ affinity for each of

these strata was determined based on their foraging and nesting behaviors; see Lucky et al.35 for details. In coding the habitat strata

of alien ant species in the present study, any species belonging to a genus that exclusively used a single stratum as reported in Lucky

et al.35 was coded as that stratum; for instance, all species of Hypoponera, which nest and forage in leaf litter or soil, were coded as

‘‘litter-and-soil.’’ For all other species, a literature search—typically using Google Scholar as well as the web resources AntWiki43 and

AntWeb36 to identify primary literature—was conducted to determine the stratum or strata used. If we found clear evidence for a spe-

cies’ use of more than one stratum, all relevant strata (i.e., up to a maximum of three) were coded for that species. For instance, the

Ghost Ant, Tapinoma melanocephalum, a species displaying extremely high environmental plasticity, was coded as ‘‘arboreal’’ and

‘‘ground-surface’’ and ‘‘litter-ant-soil’’ as it has been observed foraging and nesting in all three strata.44

QUANTIFICATION AND STATISTICAL ANALYSIS

All data analysis was conducted in R version 4.1.45 We used Chi-square tests to compare the frequency distributions of alien ant

species in the different invasion capacities (defined at the global scale) in terms of their taxonomic composition (proportions of spe-

cies in different ant subfamilies) and use of vertical habitat strata (proportions of species in each of the three strata). We also

compared each of these to the taxonomic composition of all ants and vertical habitat strata of all ant genera (using updated data

from Lucky et al.35). Details of Chi-square tests are in Data S1. We characterized flows of Level III: Naturalize ant species within

and between different zoogeographic realms, and used resampling tests (after Van Kleunen et al.46) to assess whether the observed

flows were statistically larger or smaller than expected. The resampling tests involved comparing the observed flows to flows based

on 9,999 randomdraws from the full list of naturalized ant species. If the observed numberwas in the upper or lower 2.5%quantiles of

the resampled values, the flows were significantly higher or lower, respectively, than expected. Results of the resampling tests are

shown in Figure S2.
Current Biology 33, 566–571.e1–e3, February 6, 2023 e2
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ADDITIONAL RESOURCES

Data on ant species occurrences globally is compiled in the Global Ant Biodiversity Informatics (GABI) database,34 which is regularly

updated. Information on the literature and database sources corresponding to species occurrences is available fromGABI, and range

maps for ant species across regions globally can be viewed at: https://antmaps.org.
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Figure S1. Summary plot for 59 alien ant species recorded as non-native in 20 or more regions globally, 
illustrating the proportions of regions for which species were recorded in each of three invasion capacity 
levels. Related to Figure 1. 
 



 

 
 
Figure S2. Flows in the diversity of alien ant species with an invasion capacity (at realm-scale) of Level 
III: Naturalize exchanged among eleven major zoogeographic realms. Related to Figure 2 and STAR 
Methods. First diagram shows flows for all realms; remaining diagrams show flows for individual realms. 
Diagrams illustrate results of resampling tests comparing the observed flows to 999 randomly drawn samples, 
where flows with values significantly higher than those drawn under random expectations (i.e., in the upper 2.5 
percentile) are shown in red, and flows with values significantly lower than those drawn under random 
expectations (i.e., in the lower 2.5 percentile) are shown in blue; in diagrams for individual realms, flows with 
values which do not differ significantly from those drawn under random expectations are also shown in grey. 
Flows with <10 species are not shown.  
 



 

 
Figure S3. Numbers and proportions of species using different vertical habitat strata among different 
groups of alien ant species. Related to Figure 3. A comparison is shown for alien ant species recorded in 
border interceptions worldwide (All Intercepted); from naturalized populations worldwide (All Naturalized); 
from both naturalized populations and border interceptions worldwide (Naturalized & Intercepted); and from 
naturalized populations but not border interceptions worldwide (Naturalized Not Intercepted).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Species Harmful (n=17) In GISD (n=19) References Notes 

Acromyrmex octospinosus No Yes No evidence to the best of our 
knowledge; a pest.  

Anoplolepis gracilipes Yes Yes S11, S16, S18, S32  
  

Brachyponera chinensis Yes Yes S13, S45   

Lasius neglectus Yes Yes S28  
  

Linepithema humile Yes Yes S4, S7, S12, S22, S27, S40   

Monomorium floricola No Yes No evidence to the best of our 
knowledge; a pest.  

Monomorium pharaonis No Yes No evidence to the best of our 
knowledge; an urban pest.  

Myrmica rubra Yes Yes S29  
  

Myrmica specioides Yes No S21, S29 Lacking strong evidence.  

Nylanderia flavipes Yes No S20, S48 Lacking strong evidence.  

Nylanderia fulva Yes No S25, S44, S52   

Nylanderia pubens No Yes S53, S54 Species likely to have been 
confused with Nylanderia fulva 
(see references).  

Paratrechina longicornis Yes Yes S9 Lacking strong evidence.  

Pheidole megacephala Yes Yes S9, S10, S17, S19  
  

Solenopsis geminata Yes Yes S8, S34, S35, S46, S47  
  

Solenopsis invicta Yes Yes S1, S2, S5, S33, S37, S43, S51  
  

Solenopsis papuana Yes Yes S11, S23, S31  
  

Solenopsis richteri No Yes No evidence to the best of our 
knowledge.  

Solenopsis saevissima Yes No S6   

Tapinoma melanocephalum No Yes S9 Reported cases of mutualisms with 
Hemipterans with some impacts on 
aphidophagous predators and 
parasitoids but mainly in native 
range.  

Technomyrmex albipes Yes Yes S14, S36  
  

Technomyrmex brunneus Yes No S15, S38, S39, S50  
  

Trichomyrmex destructor No Yes No evidence to the best of our 
knowledge; a pest.  

Wasmannia auropunctata Yes Yes S3, S24, S26, S30, S41, S42   

 
Table S1. Summary of ant species considered to be ‘Harmful’ in the present study, and a comparison 
with species listed in the IUCN Global Invasive Species Database (GISD).S55 Related to Figure 3 and 
STAR Methods. Harmful species are species for which there exists evidence (documented in ‘References’) of 
their direct impacts on native biodiversity or ecosystem processes in their invaded ranges. 
 
 
 
 

 



 

Subfamily 
Native  

(n=15,969) 
Alien  

(n=520) 

Level I.  
Transport Only 

(n=161) 

Level II: Est.  
Indoors Only  

(n=50) 

Level III:  
Naturalize  

(n=309) 
n % n % n % n % n % 

Agroecomyrmecinae 2 0.01 0 0.00 0 0.00 0 0 0 0.00 

Amblyoponinae 143 0.90 6 1.15 0 0.00 0 0 6 1.94 

Aneuretinae 1 0.01 0 0.00 0 0.00 0 0 0 0.00 

Apomyrminae 1 0.01 0 0.00 0 0.00 0 0 0 0.00 

Dolichoderinae 842 5.27 48 9.23 15 9.32 8 16 25 8.09 

Dorylinae 863 5.40 5 0.96 0 0.00 0 0 5 1.62 

Ectatomminae 303 1.90 11 2.12 3 1.86 2 4 6 1.94 

Formicinae 4065 25.5 152 29.2 67 41.6 20 40 65 21.0 

Leptanillinae 70 0.44 0 0.00 0 0.00 0 0 0 0.00 

Martialinae 1 0.01 0 0.00 0 0.00 0 0 0 0.00 

Myrmeciinae 94 0.59 3 0.58 2 1.24 0 0 1 0.32 

Myrmicinae 7781 48.7 236 45.4 68 42.2 14 28 154 49.8 

Paraponerinae 1 0.01 0 0.00 0 0.00 0 0 0 0.00 

Ponerinae 1394 8.73 52 10.0 5 3.11 6 12 41 13.3 

Proceratiinae 165 1.03 0 0.00 0 0.00 0 0 0 0.00 

Pseudomyrmecinae 243 1.52 7 1.35 1 0.62 0 0 6 1.94 

 
Table S2. Numbers and proportions of native and alien ant species (and subspecies) in 16 different ant 
subfamilies. Related to Figure 3. Columns show the values for all described species (Native), all alien species 
(Alien), as well as alien species in three different levels of invasion capacity. Data for native taxa from 
AntCat.S56 
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